If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/3x-2(9-1/3x)=7/3x+9
We move all terms to the left:
4/3x-2(9-1/3x)-(7/3x+9)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3x+9)!=0We add all the numbers together, and all the variables
x∈R
4/3x-2(-1/3x+9)-(7/3x+9)=0
We multiply parentheses
4/3x+2x-(7/3x+9)-18=0
We get rid of parentheses
4/3x+2x-7/3x-9-18=0
We multiply all the terms by the denominator
2x*3x-9*3x-18*3x+4-7=0
We add all the numbers together, and all the variables
2x*3x-9*3x-18*3x-3=0
Wy multiply elements
6x^2-27x-54x-3=0
We add all the numbers together, and all the variables
6x^2-81x-3=0
a = 6; b = -81; c = -3;
Δ = b2-4ac
Δ = -812-4·6·(-3)
Δ = 6633
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6633}=\sqrt{9*737}=\sqrt{9}*\sqrt{737}=3\sqrt{737}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-3\sqrt{737}}{2*6}=\frac{81-3\sqrt{737}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+3\sqrt{737}}{2*6}=\frac{81+3\sqrt{737}}{12} $
| x/3+-28=-4 | | 7x4=9x | | 9k+9=6k-5+5k | | -(3x+2)-2=-2x-(x+4) | | 4(4x+4)=20x+14-4x+2 | | 105-y=290 | | -10+3y=4-8y+9y | | 3x+49=-xx= | | 7=a/4-21 | | 2n+-14=0 | | 6(a+2)=4 | | -6-5h-5=-6h-2 | | 2x-3=2(x-1)+11 | | -15k-19+2k=-16k-1 | | -5f+7=-6f+2 | | 9+2m=23 | | (3x+5)/8x(2x)=x | | c^2=179 | | 3p+4=4p+9 | | 3x-8=16+5x= | | 2.5x+21=3.75+10 | | 7(c-1)+25=c-34 | | 5/16f+11/2=22/3 | | -9.4j+1.2=4.8j+6.5+7.41 | | 5x-9=-2(x-6) | | 2v+-3=5 | | 7c+32=c-34 | | 7(2x+4)=2(7x+3) | | 5x^2+7=23 | | 4p-p+9=9+3p | | 5-4t=-11 | | 9x-7=4x-8=180 |