4/55d-9+12d+4+d-6+2d=271

Simple and best practice solution for 4/55d-9+12d+4+d-6+2d=271 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/55d-9+12d+4+d-6+2d=271 equation:



4/55d-9+12d+4+d-6+2d=271
We move all terms to the left:
4/55d-9+12d+4+d-6+2d-(271)=0
Domain of the equation: 55d!=0
d!=0/55
d!=0
d∈R
We add all the numbers together, and all the variables
15d+4/55d-282=0
We multiply all the terms by the denominator
15d*55d-282*55d+4=0
Wy multiply elements
825d^2-15510d+4=0
a = 825; b = -15510; c = +4;
Δ = b2-4ac
Δ = -155102-4·825·4
Δ = 240546900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240546900}=\sqrt{100*2405469}=\sqrt{100}*\sqrt{2405469}=10\sqrt{2405469}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15510)-10\sqrt{2405469}}{2*825}=\frac{15510-10\sqrt{2405469}}{1650} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15510)+10\sqrt{2405469}}{2*825}=\frac{15510+10\sqrt{2405469}}{1650} $

See similar equations:

| +3+3x-1=x+2+2x | | r−18=11 | | s+6.74=13.74 | | -3w+10=1 | | g+38=100 | | 3x+9=93 | | z+15=48 | | 26-x=24 | | -26=-u/9 | | 1/3-1/2x=5/6x | | 1/2x+35=55 | | 485=j-470 | | −5x​ =6 | | x-5+3=16 | | 4(1/2x-2)=2x-8 | | -2(x+3)=6x-7+2(2x+5) | | 28=m/22 | | x2+1=6−4x. | | +2-(+3-2(+x+1))=2(+x-(+3+2x | | 4/5x+2=-10 | | h/16=25 | | t/7-9=11 | | 6x/6=81 | | -5.3=d+2.7 | | w-438=514 | | y+12=-23 | | 4/7a=4 | | 3c+40+90=180 | | 12x-11x=10 | | x/9=-12.2 | | 10n=370 | | -9x/1=-107 |

Equations solver categories