4/5k-2(k+3)=-24

Simple and best practice solution for 4/5k-2(k+3)=-24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5k-2(k+3)=-24 equation:



4/5k-2(k+3)=-24
We move all terms to the left:
4/5k-2(k+3)-(-24)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
We add all the numbers together, and all the variables
4/5k-2(k+3)+24=0
We multiply parentheses
4/5k-2k-6+24=0
We multiply all the terms by the denominator
-2k*5k-6*5k+24*5k+4=0
Wy multiply elements
-10k^2-30k+120k+4=0
We add all the numbers together, and all the variables
-10k^2+90k+4=0
a = -10; b = 90; c = +4;
Δ = b2-4ac
Δ = 902-4·(-10)·4
Δ = 8260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8260}=\sqrt{4*2065}=\sqrt{4}*\sqrt{2065}=2\sqrt{2065}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{2065}}{2*-10}=\frac{-90-2\sqrt{2065}}{-20} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{2065}}{2*-10}=\frac{-90+2\sqrt{2065}}{-20} $

See similar equations:

| 1/5x-1=-11/20x-8 | | -(-5x-1)=13 | | (2+v)(3v+8)=0 | | (5x-3)2=25x+9 | | 2x^2+8x=1020 | | 15+4x^2+17x=0 | | −2|x+4|=−10 | | 1.02^x=7 | | 34x^2=15x-1225=0 | | 2/3-x=24 | | 4a-2=-18 | | T=U+w+V | | a+353=−274 | | a+353=−274. | | 12x-12+2x=4(6x-4)+2 | | 4n+5n=-82 | | x/9=7x/8-55 | | 5x-2x=-19-16 | | 16+4x+3x-3=2x+2x | | 4(2.5g-4)+(3(1.2g-2)=0 | | t-32=99 | | 0.5x-+6=-12 | | (1/2)x+x=10 | | 1/x=1/480+1/910+1/1200 | | 1/Rt=1/480+1/910+1/1200 | | U/5-4/15=u/3 | | 17.60+(.2x)=x | | F=(5x+4)/(2x-8) | | P=s1+s2+s3/s2 | | 0.14y+0.05(y+4000)=960 | | (5-t)+3t+2)=0 | | -6-4(-2x11+11)=-66 |

Equations solver categories