4/5x+6-1/3x=2/5x+9

Simple and best practice solution for 4/5x+6-1/3x=2/5x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5x+6-1/3x=2/5x+9 equation:



4/5x+6-1/3x=2/5x+9
We move all terms to the left:
4/5x+6-1/3x-(2/5x+9)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+9)!=0
x∈R
We get rid of parentheses
4/5x-1/3x-2/5x-9+6=0
We calculate fractions
(-6x+4)/15x^2+(-5x)/15x^2-9+6=0
We add all the numbers together, and all the variables
(-6x+4)/15x^2+(-5x)/15x^2-3=0
We multiply all the terms by the denominator
(-6x+4)+(-5x)-3*15x^2=0
Wy multiply elements
-45x^2+(-6x+4)+(-5x)=0
We get rid of parentheses
-45x^2-6x-5x+4=0
We add all the numbers together, and all the variables
-45x^2-11x+4=0
a = -45; b = -11; c = +4;
Δ = b2-4ac
Δ = -112-4·(-45)·4
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-29}{2*-45}=\frac{-18}{-90} =1/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+29}{2*-45}=\frac{40}{-90} =-4/9 $

See similar equations:

| 3y/7+1/7=37 | | 7(x+3)=2x+1 | | 1/3(-6x-9)=3x-15-2x | | 5x-3(x+1)=5 | | (-10x-2=8) | | -4/5u=-20 | | 4.25*x=38.25 | | 5/8x-1/2=3/5x+3 | | -113+2x=30-9x | | 7=3x/5 | | 3-x=1/2(7+2x) | | 6=18x+x^2 | | 7x-4+6x=139 | | (-9)2+7x=1 | | x+18+15=180 | | 7x+6x=139 | | 87/8=x-3/4 | | 0.2x+1=3.4 | | x(2)+35=0 | | 0,5x+6=3 | | 3/2-2(x-2)=-5/2x+3 | | 4x-13+15=180 | | x(2)-169=0 | | 10^(3x-5)=7^(x) | | 12=36x+x^2 | | 3/8+5x=3/4x+2 | | 10-3k+4k=20 | | 4a-42=a | | t/4-5=3 | | -21+3x=2x+8 | | -8+2x-x=-8 | | 8x=4x+100 |

Equations solver categories