4/5x-2=3/10x+1

Simple and best practice solution for 4/5x-2=3/10x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5x-2=3/10x+1 equation:



4/5x-2=3/10x+1
We move all terms to the left:
4/5x-2-(3/10x+1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x+1)!=0
x∈R
We get rid of parentheses
4/5x-3/10x-1-2=0
We calculate fractions
40x/50x^2+(-15x)/50x^2-1-2=0
We add all the numbers together, and all the variables
40x/50x^2+(-15x)/50x^2-3=0
We multiply all the terms by the denominator
40x+(-15x)-3*50x^2=0
Wy multiply elements
-150x^2+40x+(-15x)=0
We get rid of parentheses
-150x^2+40x-15x=0
We add all the numbers together, and all the variables
-150x^2+25x=0
a = -150; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·(-150)·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*-150}=\frac{-50}{-300} =1/6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*-150}=\frac{0}{-300} =0 $

See similar equations:

| x+43=72 | | 3.50+2x=3.25+5x | | x+(-14)=-18 | | 125+2x=387 | | 2x(x=1) | | 1/3x7-6=-15 | | 8-5x=4x-+ | | 11x=9x+4 | | 5x-4=69 | | 2/3/10=x/9 | | 4x^2−10=4x−7 | | 70=  −10a+60−10a+60 | | 4x2−10=4x−7 | | 0-5x+14=0 | | 4y^2=116 | | 3y-3=104 | | -1+7x=48 | | —6(1-5v)=54 | | y-5(1+2y)+14=0 | | -1+7x=-48 | | 3x+25=2125 | | e/7=-12 | | 1+2y-2y-1=0 | | 3(y-0.5)-2(y+1)=4.5 | | x+44=-37 | | -150=-10j | | -15.65+7.4k-19.16=9.8k-19.45 | | 15+2b-9+1.5(b+2)=90-b | | x-91=-23 | | 4x-4=5x-26 | | -4.3q+15.4=-19.7-6.9q | | 1x-2=3x+4 |

Equations solver categories