4/5x-3=2/3x+5

Simple and best practice solution for 4/5x-3=2/3x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5x-3=2/3x+5 equation:



4/5x-3=2/3x+5
We move all terms to the left:
4/5x-3-(2/3x+5)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x+5)!=0
x∈R
We get rid of parentheses
4/5x-2/3x-5-3=0
We calculate fractions
12x/15x^2+(-10x)/15x^2-5-3=0
We add all the numbers together, and all the variables
12x/15x^2+(-10x)/15x^2-8=0
We multiply all the terms by the denominator
12x+(-10x)-8*15x^2=0
Wy multiply elements
-120x^2+12x+(-10x)=0
We get rid of parentheses
-120x^2+12x-10x=0
We add all the numbers together, and all the variables
-120x^2+2x=0
a = -120; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-120)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-120}=\frac{-4}{-240} =1/60 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-120}=\frac{0}{-240} =0 $

See similar equations:

| 6-1n=15 | | z/5-1/4=3/4 | | 2=6r=3r-1 | | 565.2=1/3*3.14*r3 | | -25z-0.5=-35z+1.6 | | (4c+5)9=3 | | -1/5u-1/2=-6/7 | | −7x+7(−2x+25)=−56 | | -3y+24=9(y-4) | | 4-(3j+2)=2(1-2j)+5 | | -9s=-10s−9 | | 3x12+7=180 | | 1056000=p*0.055*6 | | -3+9x=18x-6 | | -4=24/n | | 9x+23=7x+15 | | -2.1y=10.5 | | -4/3b=-8 | | 17=1+x-3x | | 2.2v-0/1=7.5 | | 2n+25=109 | | 2(x-9)-x=36 | | -7-14=-5x-4 | | 44.4+52.3+x=180 | | 10=5+a/10 | | 7n+25=109 | | 8=-8x+6(x+2) | | 3x+1.28=7/10x | | 8=-8x+6(x+6) | | 5x+20=4+8x | | 3(2h-1)=5h-3 | | 14.5=2.9b |

Equations solver categories