4/5x-7=1/2x+9

Simple and best practice solution for 4/5x-7=1/2x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5x-7=1/2x+9 equation:



4/5x-7=1/2x+9
We move all terms to the left:
4/5x-7-(1/2x+9)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x+9)!=0
x∈R
We get rid of parentheses
4/5x-1/2x-9-7=0
We calculate fractions
8x/10x^2+(-5x)/10x^2-9-7=0
We add all the numbers together, and all the variables
8x/10x^2+(-5x)/10x^2-16=0
We multiply all the terms by the denominator
8x+(-5x)-16*10x^2=0
Wy multiply elements
-160x^2+8x+(-5x)=0
We get rid of parentheses
-160x^2+8x-5x=0
We add all the numbers together, and all the variables
-160x^2+3x=0
a = -160; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-160)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-160}=\frac{-6}{-320} =3/160 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-160}=\frac{0}{-320} =0 $

See similar equations:

| 0.5(x4−5)+17= | | 15=2h^2+-3 | | 30x+25=75+25x | | 2(x+3)=5x+27 | | 15=2h+-3 | | 1/2x-3=3/4x+5/8 | | 13=31/4x | | 9=3(k-5) | | 7y+2=4y-13 | | 3x20=60 | | 0.75x24=18 | | 200(60)+5x=10(60+x) | | 4x-75=-56 | | -x+20(4/5)=10 | | b/9+31=39 | | 3(x−4)=x+8 | | 1/2x-15=1/2(x-15) | | 27=12-5t | | 3x-15=-42 | | 2(z+3)=8 | | 5g-12=48 | | 6+6u=48 | | 10^(1-x)=6x | | 43x+50=0 | | 4(x-3)=44/11 | | 3x-5(x-5)=3+2x+4 | | h/8-10=-6 | | 6.1x=-12.81 | | 3x-5x+25=7+2x | | -31=4w-7 | | (X+6)/4=(x-2)/5 | | 11=9q-16 |

Equations solver categories