If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/5x^2=200
We move all terms to the left:
4/5x^2-(200)=0
Domain of the equation: 5x^2!=0We multiply all the terms by the denominator
x^2!=0/5
x^2!=√0
x!=0
x∈R
-200*5x^2+4=0
Wy multiply elements
-1000x^2+4=0
a = -1000; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-1000)·4
Δ = 16000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16000}=\sqrt{1600*10}=\sqrt{1600}*\sqrt{10}=40\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{10}}{2*-1000}=\frac{0-40\sqrt{10}}{-2000} =-\frac{40\sqrt{10}}{-2000} =-\frac{\sqrt{10}}{-50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{10}}{2*-1000}=\frac{0+40\sqrt{10}}{-2000} =\frac{40\sqrt{10}}{-2000} =\frac{\sqrt{10}}{-50} $
| 60/2x=15 | | 9x-1(4x-6)=21 | | 6x-30+3x=180 | | 10-b=-9 | | 61/2=-4n-4 | | 41/5+x=6 | | 6(-7p+2)=96 | | 10a-7a+11+8a-a-12= | | 4-3(x+6)=6x+1 | | -2y+16=6+3y | | 12x2=-1200 | | -5(p+9)=75 | | 12x2=1200 | | 2x+5-3x=6-4x+2 | | -4(5+3k)=16 | | 2x+5-3x=6-4x=2 | | 9x-1(4x+6)=21 | | 2x=5-3x=6-4x=2 | | ((8-10x)(5x+4)-2)=0 | | -15+23=-4(x+3) | | x+.03x=5200 | | 3(4x+4)=9(5x+3) | | -3(x-5)=2(x+1)+5 | | 20250=-10t^2+2000 | | 5t^2+4.9t-300=0 | | -20-10h=-20+8h | | -18+83=15(x+2) | | t^2+t+60=0 | | 3/2x-12=118 | | -2(x+1)+x=3 | | 5p-6=16 | | t^2+t-60=0 |