If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/5x=8.x=10
We move all terms to the left:
4/5x-(8.x)=0
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
4/5x-(+8.x)=0
We get rid of parentheses
4/5x-8.x=0
We multiply all the terms by the denominator
-(8.x)*5x+4=0
We add all the numbers together, and all the variables
-(+8.x)*5x+4=0
We multiply parentheses
-40x^2+4=0
a = -40; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-40)·4
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*-40}=\frac{0-8\sqrt{10}}{-80} =-\frac{8\sqrt{10}}{-80} =-\frac{\sqrt{10}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*-40}=\frac{0+8\sqrt{10}}{-80} =\frac{8\sqrt{10}}{-80} =\frac{\sqrt{10}}{-10} $
| 60+4.95x=25+49.95x | | ?x?x?=360 | | p+128.95=321.05 | | -8y+5(-2)=11 | | 3×(x-3)=6×(9-x) | | 180=9x+17 | | -2x-22=13x+22 | | 180=6x+68 | | 180=6x+68+9x+17 | | 57+m=98 | | 6+(10u-5)=52 | | f(9)=5X-7 | | n=14=37 | | f(9)=59-7 | | 5x+11=2x+16 | | w-190=380 | | -2/3-1/2u=-1/7 | | 190+w=380 | | 500000=-6800x^2+13000x | | w-35.50=68.50 | | 6/5v-5/2=-4/3 | | 28(2x-19)=70 | | -5.66xx=-99.8 | | 2.5=y | | -5x-1(0)=-3 | | 15/5=3g/4 | | f(8)=8+3 | | 6.4b=0.9b | | 0.5n+3=5 | | –8k−12k−1=19 | | 24x^2+11x-18=0 | | -5.66xA=-99.8 |