4/5z-3=9/10z+2

Simple and best practice solution for 4/5z-3=9/10z+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5z-3=9/10z+2 equation:



4/5z-3=9/10z+2
We move all terms to the left:
4/5z-3-(9/10z+2)=0
Domain of the equation: 5z!=0
z!=0/5
z!=0
z∈R
Domain of the equation: 10z+2)!=0
z∈R
We get rid of parentheses
4/5z-9/10z-2-3=0
We calculate fractions
40z/50z^2+(-45z)/50z^2-2-3=0
We add all the numbers together, and all the variables
40z/50z^2+(-45z)/50z^2-5=0
We multiply all the terms by the denominator
40z+(-45z)-5*50z^2=0
Wy multiply elements
-250z^2+40z+(-45z)=0
We get rid of parentheses
-250z^2+40z-45z=0
We add all the numbers together, and all the variables
-250z^2-5z=0
a = -250; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·(-250)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*-250}=\frac{0}{-500} =0 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*-250}=\frac{10}{-500} =-1/50 $

See similar equations:

| 5(4x-3)-10x=55 | | 5+23y=-3 | | x²+3x=-2 | | x²+3x-6=-8 | | -5m+5=-2(5m+5) | | 255=5x+20 | | 19.2/(160–x)=20/100 | | (160–x)/19.2=20/100 | | 19.2/x=20/100 | | 32=4w-12 | | 7x-6=4x+19 | | 18y+47=173 | | x-(x*0.2)=180000 | | -11-20=-5(p+1) | | 8×n+4=4(2n+1) | | -12x-8=92 | | 9x+.5=18.5 | | -(3+x)+2(1+2x)=-10 | | 5x+23=-3 | | 1{,}25=0{,}75+r | | 11=4/9h-1 | | 4a(7-10)=5a+72 | | 36=−5d+6 | | 2x+-2=7 | | -13-m=m+3 | | 10+-12x=-34 | | -36=2k+7-4k | | =10÷5+10–9x11 | | 1=v-1 | | 15y+48=8y-47 | | -2(3a-3)=6(4-a) | | -11x+3(x+5)=7 |

Equations solver categories