4/7(7n)+10(6-n)=-30

Simple and best practice solution for 4/7(7n)+10(6-n)=-30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/7(7n)+10(6-n)=-30 equation:



4/7(7n)+10(6-n)=-30
We move all terms to the left:
4/7(7n)+10(6-n)-(-30)=0
Domain of the equation: 77n!=0
n!=0/77
n!=0
n∈R
We add all the numbers together, and all the variables
4/77n+10(-1n+6)-(-30)=0
We add all the numbers together, and all the variables
4/77n+10(-1n+6)+30=0
We multiply parentheses
4/77n-10n+60+30=0
We multiply all the terms by the denominator
-10n*77n+60*77n+30*77n+4=0
Wy multiply elements
-770n^2+4620n+2310n+4=0
We add all the numbers together, and all the variables
-770n^2+6930n+4=0
a = -770; b = 6930; c = +4;
Δ = b2-4ac
Δ = 69302-4·(-770)·4
Δ = 48037220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48037220}=\sqrt{4*12009305}=\sqrt{4}*\sqrt{12009305}=2\sqrt{12009305}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6930)-2\sqrt{12009305}}{2*-770}=\frac{-6930-2\sqrt{12009305}}{-1540} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6930)+2\sqrt{12009305}}{2*-770}=\frac{-6930+2\sqrt{12009305}}{-1540} $

See similar equations:

| (5x-13)=180 | | -3/z=-9 | | 4(2x+3)=-6+2(4x-6) | | 96=(3x) | | 8-(2x-6)=26 | | 93=(3x) | | 5x-2=3x+4=180 | | -6=p+6/2 | | x+10/7-x=8/9 | | 2m+5m-10=18 | | (-2g+7)–(g+11=) | | ​0.23=​x26 | | 34=13n | | 1980=(n-2)•180 | | 4(x+2)=40​ | | 8+v=23 | | 8y-4=4(2y-1) | | −3x−6=−30​ | | 2x=100x5=500 | | w+3.8=5.24 | | 3-5+2x=13 | | 25=5+y/5 | | b-1/4=91/2 | | 6.q=54 | | 3t+20=75 | | 3x+16=9x-38 | | 1/9c=3/8 | | b2-2b=24 | | 1.68n=6.72 | | 2(2x+1.5)=18 | | 56=-10+12n | | 5x+4=3x+12. |

Equations solver categories