If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/7k+2/3=4+5/2k
We move all terms to the left:
4/7k+2/3-(4+5/2k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 2k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
4/7k-(5/2k+4)+2/3=0
We get rid of parentheses
4/7k-5/2k-4+2/3=0
We calculate fractions
56k^2/126k^2+72k/126k^2+(-315k)/126k^2-4=0
We multiply all the terms by the denominator
56k^2+72k+(-315k)-4*126k^2=0
Wy multiply elements
56k^2-504k^2+72k+(-315k)=0
We get rid of parentheses
56k^2-504k^2+72k-315k=0
We add all the numbers together, and all the variables
-448k^2-243k=0
a = -448; b = -243; c = 0;
Δ = b2-4ac
Δ = -2432-4·(-448)·0
Δ = 59049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{59049}=243$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-243)-243}{2*-448}=\frac{0}{-896} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-243)+243}{2*-448}=\frac{486}{-896} =-243/448 $
| 14-1/3x=4 | | 3/5a-5+8/9a=-19 | | 2x+2(x+1)=46 | | 4(4-2)=22+x | | -8(x+4)=-8x-5(x+1) | | 17/11=v/6 | | 5/9t-1)=20 | | (4x-1)(x+3)=5x(0,8x+2) | | -2a-8a=14-4a-4a | | 2x+2(x+1)=58 | | -2-1x=-3x-11 | | -3p-5=-5-4p | | 9(3x+4)=-9+7(7x-3) | | 3(p+5)=60 | | 99(3x+4)=-9+7(7x-3) | | 4(4-x)=x+22 | | 257=77+10x | | 4(x-4)=22+X | | 9x+-4=23 | | -12=x/3+6 | | bX6=42 | | 2x+5x+60=180 | | -12+20=-4(x+4) | | 4(6+y)=5 | | -6(3x-8)=-63.7x+3(4x-1)=-79 | | 7x(-4x^2)=0 | | x+9x=800 | | 1=a-1 | | 7x*4x^2=0 | | 5x+1+x+5=90 | | x+5+5x+1=90 | | 2z-1=19 |