4/7x+912=x

Simple and best practice solution for 4/7x+912=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/7x+912=x equation:



4/7x+912=x
We move all terms to the left:
4/7x+912-(x)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
We add all the numbers together, and all the variables
-1x+4/7x+912=0
We multiply all the terms by the denominator
-1x*7x+912*7x+4=0
Wy multiply elements
-7x^2+6384x+4=0
a = -7; b = 6384; c = +4;
Δ = b2-4ac
Δ = 63842-4·(-7)·4
Δ = 40755568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40755568}=\sqrt{16*2547223}=\sqrt{16}*\sqrt{2547223}=4\sqrt{2547223}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6384)-4\sqrt{2547223}}{2*-7}=\frac{-6384-4\sqrt{2547223}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6384)+4\sqrt{2547223}}{2*-7}=\frac{-6384+4\sqrt{2547223}}{-14} $

See similar equations:

| 2/3x^2=4 | | .83x=2 | | .20x+.33x=2 | | Y=10x+2x | | 3x-4=20+x | | 6x+12=8x+20 | | Y=10x3+2x | | 3(2x+4)=4(2x+5) | | 5y-7=42 | | 1x+5x=192 | | n+n+n+n+0.6+0.6=n+n+0.1+0.1+2n+2n | | 4x/5-5x/3=-13 | | 10-1/2x=6;8 | | 4s=1.5 | | 10=-3p-7p | | -25=3.2x+1 | | x+144=600 | | 5=-2x-11 | | b+400=850 | | 4(5-x)+-2.1(6x)=-4.9 | | -24+3/7x=17 | | 7w=3.5 | | .3x+14.6=x-6.96 | | 1/4n+20=2/3 | | 4+6=5(x-4) | | 6+0.4h=4 | | 56=2x+(x-1)+3x-3 | | 4+0.4h=6 | | 4h+0.4=6 | | -0.8v-5.11=2.4v-6.17-4.7 | | 6h+0.4=4 | | 129/x=3/1 |

Equations solver categories