If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/9k+1/5=-7+5/7k
We move all terms to the left:
4/9k+1/5-(-7+5/7k)=0
Domain of the equation: 9k!=0
k!=0/9
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
4/9k-(5/7k-7)+1/5=0
We get rid of parentheses
4/9k-5/7k+7+1/5=0
We calculate fractions
441k^2/1575k^2+700k/1575k^2+(-1125k)/1575k^2+7=0
We multiply all the terms by the denominator
441k^2+700k+(-1125k)+7*1575k^2=0
Wy multiply elements
441k^2+11025k^2+700k+(-1125k)=0
We get rid of parentheses
441k^2+11025k^2+700k-1125k=0
We add all the numbers together, and all the variables
11466k^2-425k=0
a = 11466; b = -425; c = 0;
Δ = b2-4ac
Δ = -4252-4·11466·0
Δ = 180625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{180625}=425$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-425)-425}{2*11466}=\frac{0}{22932} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-425)+425}{2*11466}=\frac{850}{22932} =425/11466 $
| 3(x+55)=180 | | 4/9k+1/5=-7/1+5/7k | | y=-16^2+8 | | 4/9k+1/5=-7/1+5/7 | | 3*x+55=180 | | 300-2x+4(25)=3x-50 | | 5-3q-12=2q+2 | | 350d=1400 | | -3=2x/5÷1 | | |2x-5|+7=12 | | -4x2=-20 | | 7x-5/6+4x+1/7=8 | | 3x-7=31 | | a=0.5(3.14)(9) | | 5(2-x)=3(2x-5) | | -3/4x-5/8=3/2x+4/3 | | -1/3-5=7-x | | 2x+1+x+3/2x=180 | | 3(x+2)-x+1=19 | | 2(r-4)=5{r+(-7)} | | 5.9x-4.2=7.6 | | 5/8k-4/3=-9-2/5k | | 1/3x+1/6x=26 | | 2/15-1/2(3x+2)=0 | | 8x+4=4(2x+) | | E=1/2m4.2^2 | | 2(2y-5)=3(5-2y) | | v×v+5v+4=0 | | 6v×6v+12v=0 | | 6=-2(15-x) | | 4=1/2m355^2 | | 5x-2.2=62.5 |