If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/9x+2/3x=1/9x+45
We move all terms to the left:
4/9x+2/3x-(1/9x+45)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 9x+45)!=0We get rid of parentheses
x∈R
4/9x+2/3x-1/9x-45=0
We calculate fractions
(-3x+4)/27x^2+18x/27x^2-45=0
We multiply all the terms by the denominator
(-3x+4)+18x-45*27x^2=0
We add all the numbers together, and all the variables
18x+(-3x+4)-45*27x^2=0
Wy multiply elements
-1215x^2+18x+(-3x+4)=0
We get rid of parentheses
-1215x^2+18x-3x+4=0
We add all the numbers together, and all the variables
-1215x^2+15x+4=0
a = -1215; b = 15; c = +4;
Δ = b2-4ac
Δ = 152-4·(-1215)·4
Δ = 19665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19665}=\sqrt{9*2185}=\sqrt{9}*\sqrt{2185}=3\sqrt{2185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{2185}}{2*-1215}=\frac{-15-3\sqrt{2185}}{-2430} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{2185}}{2*-1215}=\frac{-15+3\sqrt{2185}}{-2430} $
| x÷4+7=21 | | 63=–3(1–2n) | | 10x-10+8x-8=180 | | 5=2(p-3) | | 13/5b+19/6=347/30-12/5b | | 1+2x2+3=15 | | 6y–8=28 | | 5-8=n/7 | | 10x+11=12x-11 | | 3/4r=-11 | | 3(x-5)+2x=-5 | | j4+8=-36 | | 2^n=22 | | 8c=9 | | 6−x2=11 | | 10x+3=9x+15 | | 1/12y+5=-19 | | 5y=15+3(2) | | 10x-10=8x-8 | | x=1-(1-x)=x | | 5y=15+3(0) | | y=3+8.5+-4 | | 200=-w^2+100w | | −23x+37=12 | | 5y=15+3(-1) | | 7×b=3.9 | | 8(9x+2)=72x-10 | | y=13+7(2) | | (x)(8-2x)(11-2x)=60 | | 2^3x-1=180 | | -23=5u-3 | | x/11-9=5/22 |