4/9x+95=x

Simple and best practice solution for 4/9x+95=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/9x+95=x equation:



4/9x+95=x
We move all terms to the left:
4/9x+95-(x)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We add all the numbers together, and all the variables
-1x+4/9x+95=0
We multiply all the terms by the denominator
-1x*9x+95*9x+4=0
Wy multiply elements
-9x^2+855x+4=0
a = -9; b = 855; c = +4;
Δ = b2-4ac
Δ = 8552-4·(-9)·4
Δ = 731169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{731169}=\sqrt{9*81241}=\sqrt{9}*\sqrt{81241}=3\sqrt{81241}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(855)-3\sqrt{81241}}{2*-9}=\frac{-855-3\sqrt{81241}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(855)+3\sqrt{81241}}{2*-9}=\frac{-855+3\sqrt{81241}}{-18} $

See similar equations:

| 21=3.5•t | | 13z-5-7z=37 | | 8k+3=4k-37 | | x+46+141=180 | | Y=(9x+3)/(6x+5) | | 4p+14=2 | | 10=5p/2 | | 3x-5=-5+4x | | a=52 | | 8s+2=34 | | m/4+69=78 | | 5/6​ u=12 | | j+28/6=10 | | z/6+13=19 | | h-26/7=6 | | 6x=10–14x2 | | s-21/4=10 | | 60=x/8 | | 135.6-7x=0 | | (12-2x)^2+(16+x)^2=20^2 | | 24-18x=6-6x | | x=10x-2+x=8+x+6 | | (100-2x)(5x-9)=0 | | –4(–3t–13)=4 | | 5z+1.5=41.5 | | 5z+1.5=4.15 | | 1=7x2=x+2 | | 18n-2=24 | | 16n-2=24 | | -3(w+57)=-36 | | x4+4x-32=0 | | 3(d-85)=42 |

Equations solver categories