If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/x-1+6/3x-1=13/3+1
We move all terms to the left:
4/x-1+6/3x-1-(13/3+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
4/x+6/3x-2-(13/3+1)=0
We get rid of parentheses
4/x+6/3x-2-1-13/3=0
We calculate fractions
108x/27x^2+6x/27x^2+(-13x)/27x^2-2-1=0
We add all the numbers together, and all the variables
108x/27x^2+6x/27x^2+(-13x)/27x^2-3=0
We multiply all the terms by the denominator
108x+6x+(-13x)-3*27x^2=0
We add all the numbers together, and all the variables
114x+(-13x)-3*27x^2=0
Wy multiply elements
-81x^2+114x+(-13x)=0
We get rid of parentheses
-81x^2+114x-13x=0
We add all the numbers together, and all the variables
-81x^2+101x=0
a = -81; b = 101; c = 0;
Δ = b2-4ac
Δ = 1012-4·(-81)·0
Δ = 10201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10201}=101$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(101)-101}{2*-81}=\frac{-202}{-162} =1+20/81 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(101)+101}{2*-81}=\frac{0}{-162} =0 $
| 36-7p=-79p-50 | | 0.3(d+6)=-0.6 | | 3w+9/7=w+3/7-3 | | .8x-20=12 | | 1/4m+3=5 | | (x-5)/4=22 | | 8x-14=-2(-4x+7) | | x2=−6x2=-6 | | 3(k-5)=-11 | | 1/4m+3=-5 | | x-5/4=22 | | .8x-5=12 | | 0.2n-5=2+0.5n | | 30y+42=15y+175 | | 4xˆ2-81=0 | | 20=3/5x+2 | | 1/5+d=23 | | 3x^2-23x+17=0 | | 34534343=078y7y | | x/27=1.8 | | 15=3(x-15) | | p*1/6=4/11 | | 11/71=13/c | | x-3/4=2+x/3 | | 60=2x^2+4x | | 4x+44.3=187.9 | | 5(y+2)-7=5y+3 | | 2x^2+25x+4=0 | | 4x-3-3x=167-16x | | -10(x-7)=35-3(x+7) | | -t=11 | | x-3=5/8 |