4/y-5/1=18/2y

Simple and best practice solution for 4/y-5/1=18/2y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/y-5/1=18/2y equation:



4/y-5/1=18/2y
We move all terms to the left:
4/y-5/1-(18/2y)=0
Domain of the equation: y!=0
y∈R
Domain of the equation: 2y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
4/y-(+18/2y)-5/1=0
We add all the numbers together, and all the variables
4/y-(+18/2y)-5=0
We get rid of parentheses
4/y-18/2y-5=0
We calculate fractions
8y/2y^2+(-18y)/2y^2-5=0
We multiply all the terms by the denominator
8y+(-18y)-5*2y^2=0
Wy multiply elements
-10y^2+8y+(-18y)=0
We get rid of parentheses
-10y^2+8y-18y=0
We add all the numbers together, and all the variables
-10y^2-10y=0
a = -10; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·(-10)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*-10}=\frac{0}{-20} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*-10}=\frac{20}{-20} =-1 $

See similar equations:

| (1/4(n+7))=9/4-n | | -2t^2+7t-5=0 | | 2/3=3/8r | | 6u-8+2(4u+5)=4(u+1) | | 1/4(n+7)=9/4-n | | 180=x^2+10x | | -8(m+3)=-7 | | (8x+21)^2=27 | | 7/10e=322 | | -2+7=n | | x÷(-2)=8 | | -4/9z=-6 | | 3x^2+11x=6 | | X/2-x/4+2=x+2 | | 3.2x-1.4=5 | | 2/3(2x+3)=8 | | 7y-12y-12=5y+8 | | 8/4z-3=5/9z | | (6x+1)^3=27 | | 3k-5+5k-13=6+6k | | n(n-1)(n+1)=-336 | | 1-p+7p=1 | | 3(y+5)=-6(3y-2)+6y | | (2x)^2=0.0841-0.58x+x^2 | | 3(-4x+5)+6=9 | | 15x-15=-4x | | (10+3)+5+x=180 | | 6/17=x/20 | | 10x+3=x+93 | | 4x+20=35 | | 4(y-2)-8=-7(-3y+2)-y | | 7(x+9)+7=10x-3(x-4) |

Equations solver categories