If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40+4x(x+20)=180
We move all terms to the left:
40+4x(x+20)-(180)=0
We add all the numbers together, and all the variables
4x(x+20)-140=0
We multiply parentheses
4x^2+80x-140=0
a = 4; b = 80; c = -140;
Δ = b2-4ac
Δ = 802-4·4·(-140)
Δ = 8640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8640}=\sqrt{576*15}=\sqrt{576}*\sqrt{15}=24\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-24\sqrt{15}}{2*4}=\frac{-80-24\sqrt{15}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+24\sqrt{15}}{2*4}=\frac{-80+24\sqrt{15}}{8} $
| -3(3y-5)+7y=9+4(4y-2) | | 84=n/4 | | 3(v+4)=-2(7v-3)+3v | | -4(w-9)=-7w+33 | | -8x+6=9(x-5) | | 86=32-k | | 7x-70=2x+5 | | 7n=44 | | 7p=119 | | 11.7-4w=5.3 | | 1=k-11 | | 7(u+5)+2u=-1 | | 14=c+2 | | 3t+7=t+-19 | | -3x-15=-14x-7 | | 5=1-d | | 5s+9=11 | | 117=11k | | x+550-x+2x=5560 | | 2x+3(3x+2)=39 | | 19=g+12 | | 4x-20=8x+60 | | 5(7x+2)=£0 | | -2x−4=5x+12 | | 2x−4=5x+12 | | 5+y*4=3 | | 2+3(4x-7)=5x+9 | | 4.5x-4.3=13.7 | | 106-v=180 | | 254=-u+40 | | 20=p+17 | | 17+w=28 |