40/2z+3+5-3z;z=-3*

Simple and best practice solution for 40/2z+3+5-3z;z=-3* equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40/2z+3+5-3z;z=-3* equation:



40/2z+3+5-3zz=-3*
We move all terms to the left:
40/2z+3+5-3zz-(-3*)=0
Domain of the equation: 2z!=0
z!=0/2
z!=0
z∈R
We add all the numbers together, and all the variables
40/2z-3zz+3+5-0=0
We add all the numbers together, and all the variables
40/2z-3zz+8=0
We multiply all the terms by the denominator
-3zz*2z+8*2z+40=0
Wy multiply elements
-6z^2+16z+40=0
a = -6; b = 16; c = +40;
Δ = b2-4ac
Δ = 162-4·(-6)·40
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{19}}{2*-6}=\frac{-16-8\sqrt{19}}{-12} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{19}}{2*-6}=\frac{-16+8\sqrt{19}}{-12} $

See similar equations:

| .2+r=7+6r | | (m+1)*(2m-3)=0 | | -b/4=11 | | 7x2+(7+3x=(5-2))÷4x2 | | 3(2x+9)=-1+14 | | 7x+15=10x-5 | | x/4​ =2x/5​ +3 | | -2(w+3)=-16 | | 3(2x+8)=-48+36 | | 50x+45(50)=29.5 | | 37/8m+5/3=65/8 | | 2b+6-12=8 | | 15x+13=7x+37 | | 105÷h=3 | | 6–2(x–3)=6(x+6) | | 4-5(x-2)=-2(-9+2x | | 7−(x+5)=4x−8 | | x+4+2x=3x+2+2* | | 6(2n-5)=-21+9n | | 6(-6n-6)-7=-331 | | 1+2x=-(4-x)=x-4 | | 9a-24=3 | | 7r+5=6r+2 | | 5x-10=8-x | | (2y-5)=7 | | -35=10x-17x | | (x-3)-2=0 | | 8x/10=10 | | 1/4x+18=42 | | 9x+5+6x-10=180 | | 25x+30=5(5x+6) | | 3x+1=2x+5* |

Equations solver categories