If it's not what You are looking for type in the equation solver your own equation and let us solve it.
400/a(2)=244
We move all terms to the left:
400/a(2)-(244)=0
Domain of the equation: a2!=0We multiply all the terms by the denominator
a^2!=0/
a^2!=√0
a!=0
a∈R
-244*a2+400=0
We add all the numbers together, and all the variables
-244a^2+400=0
a = -244; b = 0; c = +400;
Δ = b2-4ac
Δ = 02-4·(-244)·400
Δ = 390400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{390400}=\sqrt{6400*61}=\sqrt{6400}*\sqrt{61}=80\sqrt{61}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{61}}{2*-244}=\frac{0-80\sqrt{61}}{-488} =-\frac{80\sqrt{61}}{-488} =-\frac{10\sqrt{61}}{-61} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{61}}{2*-244}=\frac{0+80\sqrt{61}}{-488} =\frac{80\sqrt{61}}{-488} =\frac{10\sqrt{61}}{-61} $
| 12p+39=11(p+13) | | -8+y/2=-22 | | 5v+7v=13+2+8v-3 | | -3/2+2v=-33/10 | | 42/77=6/t+4 | | 15+y=5y+3 | | 1.2x-0.8-3.7x=-3.9x+-4.5 | | -2(2x-1)=15 | | 4v-4=12 | | lX16=900 | | 2m-3-5=m | | (6*(x-11)/5=(5*(x+11)/6 | | 1/2+3/4y=-4;-6,-5, | | 3n^-2-19n^-1+20=0 | | -1/5-4q=5 | | 8+2(z-4)=-5z+5 | | -6+5u=-31 | | 4(x+2)=-48 | | 10=(n-8)/2 | | -10=x/3+8 | | -8(6-x)=4/5(x+12) | | 23=-5+4w | | 9/4=-3/2n+43/4 | | 9x+8=8x+1+x | | x+10=17x+7 | | 3(2)+(x+1)(2)=(x+2)(2) | | -4(3-x)=4/5(x+21) | | 10x-2=-4x+54 | | 1/3-5y=8 | | -(x-3=) | | 12z-1=42 | | 25/35=2/d |