400=(x+2)(x)(3)

Simple and best practice solution for 400=(x+2)(x)(3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 400=(x+2)(x)(3) equation:


Simplifying
400 = (x + 2)(x)(3)

Reorder the terms:
400 = (2 + x)(x)(3)

Reorder the terms for easier multiplication:
400 = 3x(2 + x)
400 = (2 * 3x + x * 3x)
400 = (6x + 3x2)

Solving
400 = 6x + 3x2

Solving for variable 'x'.

Reorder the terms:
400 + -6x + -3x2 = 6x + -6x + 3x2 + -3x2

Combine like terms: 6x + -6x = 0
400 + -6x + -3x2 = 0 + 3x2 + -3x2
400 + -6x + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
400 + -6x + -3x2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-133.3333333 + 2x + x2 = 0

Move the constant term to the right:

Add '133.3333333' to each side of the equation.
-133.3333333 + 2x + 133.3333333 + x2 = 0 + 133.3333333

Reorder the terms:
-133.3333333 + 133.3333333 + 2x + x2 = 0 + 133.3333333

Combine like terms: -133.3333333 + 133.3333333 = 0.0000000
0.0000000 + 2x + x2 = 0 + 133.3333333
2x + x2 = 0 + 133.3333333

Combine like terms: 0 + 133.3333333 = 133.3333333
2x + x2 = 133.3333333

The x term is 2x.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2x + 1 + x2 = 133.3333333 + 1

Reorder the terms:
1 + 2x + x2 = 133.3333333 + 1

Combine like terms: 133.3333333 + 1 = 134.3333333
1 + 2x + x2 = 134.3333333

Factor a perfect square on the left side:
(x + 1)(x + 1) = 134.3333333

Calculate the square root of the right side: 11.590225766

Break this problem into two subproblems by setting 
(x + 1) equal to 11.590225766 and -11.590225766.

Subproblem 1

x + 1 = 11.590225766 Simplifying x + 1 = 11.590225766 Reorder the terms: 1 + x = 11.590225766 Solving 1 + x = 11.590225766 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 11.590225766 + -1 Combine like terms: 1 + -1 = 0 0 + x = 11.590225766 + -1 x = 11.590225766 + -1 Combine like terms: 11.590225766 + -1 = 10.590225766 x = 10.590225766 Simplifying x = 10.590225766

Subproblem 2

x + 1 = -11.590225766 Simplifying x + 1 = -11.590225766 Reorder the terms: 1 + x = -11.590225766 Solving 1 + x = -11.590225766 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -11.590225766 + -1 Combine like terms: 1 + -1 = 0 0 + x = -11.590225766 + -1 x = -11.590225766 + -1 Combine like terms: -11.590225766 + -1 = -12.590225766 x = -12.590225766 Simplifying x = -12.590225766

Solution

The solution to the problem is based on the solutions from the subproblems. x = {10.590225766, -12.590225766}

See similar equations:

| 3x^2+6x-400=0 | | 144x^3= | | 12(2x-5)-15(3x-2)-5(5-2x)=0 | | 5x+19=0 | | -(x^2-22)+7x-6=0 | | 0.06(2t-5)=0.12(t+1)-0.42 | | 0.6x+0.3=0.9x-2.1 | | -5x-16=2x+12 | | 0.2-0.03(x+1)=-0.01(3-x) | | 1-4a-a-5c+9c= | | 9(x+1)-1=5x+4(3+x) | | 1-4a-5c+9c-a= | | 6(2n+3)=6(7n+2)+1 | | 5(2x-1)+2(3x-1)-3(x+4)=7 | | 12x-78+12=7x+34 | | X+(x+1)=158 | | 18xsquared+48x=-32 | | y=5x^3-4x^2+3x-6 | | 3(3n+1)=7(5n+6)+4 | | 31x-9=6(4x-2)+7x+3 | | 2x-42=-2x+38 | | 3.7x-2.4=12.4 | | -2(m-4n)-3(5n+6)= | | 4cos^5(x)*sinx-4cosx*sin^5(x)-3=-2sin^2(4x) | | -4(3x-4)+9=-12x+25 | | y=-0.3x+2.5 | | .9x+.7x=3.2 | | 8x+3=8(x-7) | | x^2-60x-2500=0 | | x^3-3x=110 | | 0.14(y-4)+0.18y=0.20y-0.5 | | 2x^2-4xy+2y^2+5x+5y+3=0 |

Equations solver categories