If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40=(1/2)(96-x)
We move all terms to the left:
40-((1/2)(96-x))=0
Domain of the equation: 2)(96-x))!=0We add all the numbers together, and all the variables
x∈R
-((+1/2)(-1x+96))+40=0
We multiply parentheses ..
-((-1x^2+1/2*96))+40=0
We multiply all the terms by the denominator
-((-1x^2+1+40*2*96))=0
We calculate terms in parentheses: -((-1x^2+1+40*2*96)), so:We get rid of parentheses
(-1x^2+1+40*2*96)
We get rid of parentheses
-1x^2+1+40*2*96
We add all the numbers together, and all the variables
-1x^2+7681
Back to the equation:
-(-1x^2+7681)
1x^2-7681=0
We add all the numbers together, and all the variables
x^2-7681=0
a = 1; b = 0; c = -7681;
Δ = b2-4ac
Δ = 02-4·1·(-7681)
Δ = 30724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30724}=\sqrt{4*7681}=\sqrt{4}*\sqrt{7681}=2\sqrt{7681}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7681}}{2*1}=\frac{0-2\sqrt{7681}}{2} =-\frac{2\sqrt{7681}}{2} =-\sqrt{7681} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7681}}{2*1}=\frac{0+2\sqrt{7681}}{2} =\frac{2\sqrt{7681}}{2} =\sqrt{7681} $
| x^2-7x=2x | | -1/2(6x-12)+3x=4(-x+3)+6 | | 6(u-8)-1=-5(-3u+9)-3u | | |2v-3|=11 | | 2x-3x+3=36 | | 8m=5/8 | | 0.05(x-5)^2+2=2.2 | | 15x-11+7x=18x-11+4x | | -7a-8=69 | | (q+40)(q-20)=0 | | 13+2y=7-3y | | 8x-(3x/2)=20 | | x+(x*0.25)=98 | | 3+3r=60 | | 10=y+44 | | 4y+74=48 | | 2(x-5)+3x=10-5x | | -6+6x+2x=34 | | -2(-3-6x)=150 | | 4(p-674)=416 | | 3(-1x+7)=0 | | 2x7=42 | | 4(p−674)=416 | | -2x+8+x=2 | | 43.75=8w | | 16(j-945)=128 | | 15(10x+15)+5x= | | 209/n=19 | | j/4-7=24 | | 62=x+27 | | j4− 7=24 | | 8f+22=94 |