If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40=(10+2x)(8+2x)
We move all terms to the left:
40-((10+2x)(8+2x))=0
We add all the numbers together, and all the variables
-((2x+10)(2x+8))+40=0
We multiply parentheses ..
-((+4x^2+16x+20x+80))+40=0
We calculate terms in parentheses: -((+4x^2+16x+20x+80)), so:We get rid of parentheses
(+4x^2+16x+20x+80)
We get rid of parentheses
4x^2+16x+20x+80
We add all the numbers together, and all the variables
4x^2+36x+80
Back to the equation:
-(4x^2+36x+80)
-4x^2-36x-80+40=0
We add all the numbers together, and all the variables
-4x^2-36x-40=0
a = -4; b = -36; c = -40;
Δ = b2-4ac
Δ = -362-4·(-4)·(-40)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{41}}{2*-4}=\frac{36-4\sqrt{41}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{41}}{2*-4}=\frac{36+4\sqrt{41}}{-8} $
| -3x+48=-15x | | X=20+1y | | 2v+1=6v-7 | | 3x^2+8=46 | | 7(2y+8)=60 | | 8x-27-10-6x=15 | | -2.5x+100=-3x+4 | | 3(5x-5)=2(4x-1)+3 | | 16x-1+5x+21=20x-5 | | 2v+1=7v-9 | | (h+1)=(h+1)^2-5(h+1)+8 | | 1/2(2-4x)+2x=3 | | 8p-5=13-p | | 3(t−53)=60 | | 7x-8=-3+7x-10 | | n/5.3=-7.1 | | 144=11x | | -2+8x+5=-10x+3+18x | | 4w+50=122 | | 78+6n=42 | | 22=5x−7 | | 4(3x–5)+2x=22 | | 7x-9x=172 | | 16.5=a-5.337 | | 2(n-8)=-2n+4 | | f(6)=34 | | 19/3=6/x | | 3/2=a/8 | | 7x-36=5x+12=180 | | 9y-54=4y+12 | | F(h+1)=(h+1)^2-5(h+1)+8 | | 2(v-1)=14 |