40=(4x+3)(6x-3)

Simple and best practice solution for 40=(4x+3)(6x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40=(4x+3)(6x-3) equation:



40=(4x+3)(6x-3)
We move all terms to the left:
40-((4x+3)(6x-3))=0
We multiply parentheses ..
-((+24x^2-12x+18x-9))+40=0
We calculate terms in parentheses: -((+24x^2-12x+18x-9)), so:
(+24x^2-12x+18x-9)
We get rid of parentheses
24x^2-12x+18x-9
We add all the numbers together, and all the variables
24x^2+6x-9
Back to the equation:
-(24x^2+6x-9)
We get rid of parentheses
-24x^2-6x+9+40=0
We add all the numbers together, and all the variables
-24x^2-6x+49=0
a = -24; b = -6; c = +49;
Δ = b2-4ac
Δ = -62-4·(-24)·49
Δ = 4740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4740}=\sqrt{4*1185}=\sqrt{4}*\sqrt{1185}=2\sqrt{1185}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{1185}}{2*-24}=\frac{6-2\sqrt{1185}}{-48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{1185}}{2*-24}=\frac{6+2\sqrt{1185}}{-48} $

See similar equations:

| 4b-16=62 | | 7h-9=+2 | | x/2.4-1.2=-1.95 | | 13(9c-1)-8=115c+13 | | -43=8x+5 | | -47=3(6x-7)-7(x-1) | | 21x-6=15x+6 | | -25=4x+1 | | m/8=-9 | | -3x+7(x+5)=5×+38 | | 14n9−49=169 | | 482=9x+302 | | -67=7n+10 | | 1055=k/2=304 | | (7v+28)(v^2+v-30)=0 | | (5/c)-2=(7/4) | | 5x-16-9x=x+2+x | | (2x-3)^15=0 | | 15x-7=3x+151 | | n/4-10=2 | | Y=(1664-32x)(18+x) | | -4(x-7)=-8(x+2) | | 8x-6+6x-1+7x-11=360 | | 3x+24(3x-10)=16 | | 56=u/2 | | 9x=73.8 | | 7(x+5)=7(5+x) | | (9+y)(4y+6)=0 | | 3+0.6x=300 | | 20=-6a+a | | 4+2b=-34 | | 48=-3(4r-4 |

Equations solver categories