40=2(3x-5)(2x-1)

Simple and best practice solution for 40=2(3x-5)(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40=2(3x-5)(2x-1) equation:



40=2(3x-5)(2x-1)
We move all terms to the left:
40-(2(3x-5)(2x-1))=0
We multiply parentheses ..
-(2(+6x^2-3x-10x+5))+40=0
We calculate terms in parentheses: -(2(+6x^2-3x-10x+5)), so:
2(+6x^2-3x-10x+5)
We multiply parentheses
12x^2-6x-20x+10
We add all the numbers together, and all the variables
12x^2-26x+10
Back to the equation:
-(12x^2-26x+10)
We get rid of parentheses
-12x^2+26x-10+40=0
We add all the numbers together, and all the variables
-12x^2+26x+30=0
a = -12; b = 26; c = +30;
Δ = b2-4ac
Δ = 262-4·(-12)·30
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2116}=46$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-46}{2*-12}=\frac{-72}{-24} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+46}{2*-12}=\frac{20}{-24} =-5/6 $

See similar equations:

| 2b+7=10 | | 15x+12=-38 | | 2+4x=20-5x | | 5x•6=x•4+7 | | (1/2q+1)=-3(2q-1)=4(2q=1) | | t^2+4t+2=7 | | 4x^2+3x^2=25^2 | | 4/3x-7=1/3x+8 | | 4x^2+4x^2=25^2 | | 7(10+5x)=-35 | | 3(2x-5)+49=-8(x-6)+18x-18 | | X/5-4x+2/3=2x | | (6x^2-2)/((x-1)^3)(x+1)^3)=0 | | 3x×4=384 | | -14/3=2v | | -4x+4=-18+7x | | 1/x-1/9=4/9-x/3 | | 9=(12k-16)-7k | | 5+2/3y=11 | | -18-18a-48a+40=32 | | 8(6x+4)=8x-48 | | 5x-2x=4+x | | 26-w-4w=19 | | 16x+100-40=0 | | 3(4+n/3)=2 | | 4/3=t7 | | 9(6x-6)=6(4x+11) | | 4w-w-+26=19 | | 2(x+4)^2=10 | | 4/5(20x+12)=-35 | | 0=4x^2-6x-7 | | (x)/(7)=5 |

Equations solver categories