If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40a^2+4a=0
a = 40; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·40·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*40}=\frac{-8}{80} =-1/10 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*40}=\frac{0}{80} =0 $
| -5/t=−8 | | −5t=−8 | | z+22=-21 | | X=y³-2 | | 6x-15+×=13 | | 1.5x-12=-14 | | 5x+35=-1.5 | | (x-1)/(5)=(x+5)/(15) | | Y=4x^2+14x-33 | | 6m-3m+3+2m-4=6 | | x+(1/2x-6)=90° | | 80=6/5x | | 88=–8(v+8) | | 35-w=255 | | 3x/4=200 | | 30(x+2)=40x | | 40/x=0.455 | | 2x23=3(2x+1) | | 3x÷4=200 | | -12+x2=2x-14 | | (.90)x=55.8 | | -9x12^-8x=-22 | | 3(z+1.15)=7.92 | | 7x-1=7x−1=5x+55x+5 | | 4(b-12)+-8.3=11.7 | | 2(y-8)=1 | | 8.2+y/7=-9.3 | | 0.8x-8=9/25x+3,x | | 0.8x-8=9/25x+3 | | 14x-9=-7+10x | | 2x^2+5x^2-11x+4=0 | | c/9+-18=-20 |