40t-5t2=40(t-2)-5(t-2)2

Simple and best practice solution for 40t-5t2=40(t-2)-5(t-2)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40t-5t2=40(t-2)-5(t-2)2 equation:



40t-5t^2=40(t-2)-5(t-2)2
We move all terms to the left:
40t-5t^2-(40(t-2)-5(t-2)2)=0
We calculate terms in parentheses: -(40(t-2)-5(t-2)2), so:
40(t-2)-5(t-2)2
We multiply parentheses
40t-10t-80+20
We add all the numbers together, and all the variables
30t-60
Back to the equation:
-(30t-60)
We get rid of parentheses
-5t^2+40t-30t+60=0
We add all the numbers together, and all the variables
-5t^2+10t+60=0
a = -5; b = 10; c = +60;
Δ = b2-4ac
Δ = 102-4·(-5)·60
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{13}}{2*-5}=\frac{-10-10\sqrt{13}}{-10} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{13}}{2*-5}=\frac{-10+10\sqrt{13}}{-10} $

See similar equations:

| -12=3-2-3x | | -32=-3(1+3x)-2 | | x^2-6*x-1=0 | | 54=2(-5x-3) | | 36=-3(-3x-3) | | 8(4k-4)=-5k-32 | | 5+3x=5-19 | | (132+x)-20=180 | | 6×+8=2(3x+4) | | 4x+6+3=17+4x | | (-2+44x)=(42x+4) | | -5(n+13)=-10 | | -72=4(-3n+5)+4 | | 31/2a=11 | | -13=5(1+4m)-2m | | -3(2-3v)=33 | | 8x+15+10x+3+10x+10+80=360 | | 360=a+90+135+75 | | 11x+3=13x-1 | | 360=a+135+75 | | 8+12x+80+11x+6+105=360 | | 3(3+3v)=36 | | 2(-5x-4)=-38 | | x^2-38*x+1=0 | | 8x+34=-7x-8(-7x+6) | | 75+11x+16+10x+15+65=360 | | 1+(3x-3)=35 | | -72=4(-3n+5)+5 | | 14x-4+100+14x+1+16x-1=360 | | 2d−7=3 | | P(t)=3t+-4 | | -5(x+6)=-5 |

Equations solver categories