40x(x)+(x+2)=9(x)(x+2)

Simple and best practice solution for 40x(x)+(x+2)=9(x)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40x(x)+(x+2)=9(x)(x+2) equation:


Simplifying
40x(x) + (x + 2) = 9(x)(x + 2)

Multiply x * x
40x2 + (x + 2) = 9(x)(x + 2)

Reorder the terms:
40x2 + (2 + x) = 9(x)(x + 2)

Remove parenthesis around (2 + x)
40x2 + 2 + x = 9(x)(x + 2)

Reorder the terms:
2 + x + 40x2 = 9(x)(x + 2)

Reorder the terms:
2 + x + 40x2 = 9x(2 + x)
2 + x + 40x2 = (2 * 9x + x * 9x)
2 + x + 40x2 = (18x + 9x2)

Solving
2 + x + 40x2 = 18x + 9x2

Solving for variable 'x'.

Reorder the terms:
2 + x + -18x + 40x2 + -9x2 = 18x + 9x2 + -18x + -9x2

Combine like terms: x + -18x = -17x
2 + -17x + 40x2 + -9x2 = 18x + 9x2 + -18x + -9x2

Combine like terms: 40x2 + -9x2 = 31x2
2 + -17x + 31x2 = 18x + 9x2 + -18x + -9x2

Reorder the terms:
2 + -17x + 31x2 = 18x + -18x + 9x2 + -9x2

Combine like terms: 18x + -18x = 0
2 + -17x + 31x2 = 0 + 9x2 + -9x2
2 + -17x + 31x2 = 9x2 + -9x2

Combine like terms: 9x2 + -9x2 = 0
2 + -17x + 31x2 = 0

Begin completing the square.  Divide all terms by
31 the coefficient of the squared term: 

Divide each side by '31'.
0.06451612903 + -0.5483870968x + x2 = 0

Move the constant term to the right:

Add '-0.06451612903' to each side of the equation.
0.06451612903 + -0.5483870968x + -0.06451612903 + x2 = 0 + -0.06451612903

Reorder the terms:
0.06451612903 + -0.06451612903 + -0.5483870968x + x2 = 0 + -0.06451612903

Combine like terms: 0.06451612903 + -0.06451612903 = 0.00000000000
0.00000000000 + -0.5483870968x + x2 = 0 + -0.06451612903
-0.5483870968x + x2 = 0 + -0.06451612903

Combine like terms: 0 + -0.06451612903 = -0.06451612903
-0.5483870968x + x2 = -0.06451612903

The x term is -0.5483870968x.  Take half its coefficient (-0.2741935484).
Square it (0.07518210198) and add it to both sides.

Add '0.07518210198' to each side of the equation.
-0.5483870968x + 0.07518210198 + x2 = -0.06451612903 + 0.07518210198

Reorder the terms:
0.07518210198 + -0.5483870968x + x2 = -0.06451612903 + 0.07518210198

Combine like terms: -0.06451612903 + 0.07518210198 = 0.01066597295
0.07518210198 + -0.5483870968x + x2 = 0.01066597295

Factor a perfect square on the left side:
(x + -0.2741935484)(x + -0.2741935484) = 0.01066597295

Calculate the square root of the right side: 0.103276197

Break this problem into two subproblems by setting 
(x + -0.2741935484) equal to 0.103276197 and -0.103276197.

Subproblem 1

x + -0.2741935484 = 0.103276197 Simplifying x + -0.2741935484 = 0.103276197 Reorder the terms: -0.2741935484 + x = 0.103276197 Solving -0.2741935484 + x = 0.103276197 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.2741935484' to each side of the equation. -0.2741935484 + 0.2741935484 + x = 0.103276197 + 0.2741935484 Combine like terms: -0.2741935484 + 0.2741935484 = 0.0000000000 0.0000000000 + x = 0.103276197 + 0.2741935484 x = 0.103276197 + 0.2741935484 Combine like terms: 0.103276197 + 0.2741935484 = 0.3774697454 x = 0.3774697454 Simplifying x = 0.3774697454

Subproblem 2

x + -0.2741935484 = -0.103276197 Simplifying x + -0.2741935484 = -0.103276197 Reorder the terms: -0.2741935484 + x = -0.103276197 Solving -0.2741935484 + x = -0.103276197 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.2741935484' to each side of the equation. -0.2741935484 + 0.2741935484 + x = -0.103276197 + 0.2741935484 Combine like terms: -0.2741935484 + 0.2741935484 = 0.0000000000 0.0000000000 + x = -0.103276197 + 0.2741935484 x = -0.103276197 + 0.2741935484 Combine like terms: -0.103276197 + 0.2741935484 = 0.1709173514 x = 0.1709173514 Simplifying x = 0.1709173514

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.3774697454, 0.1709173514}

See similar equations:

| 2ln(x+3)=ln(x+15) | | -y^2+2y+2=0 | | -4.9x^2+9.8+o=0 | | 9330000cm^3= | | (2w-6w)+(5y+6y)+(9x-3X)= | | -log(13-3x)=0 | | -log(13-3x)+2log(x-3)=0 | | 2iz^3-16=0 | | 18m-8=-35m^2 | | x(x)=64 | | Y^2=0.5y+1.5 | | 0.01=-0.4(x-0.03) | | Y=0.5(-1)+5 | | -l^2+8l+96=0 | | 0.1=-0.4(x-0.03) | | 7x-4(2x-8)=23 | | x^2+3x+6=X^2-x+2 | | 0.1=0.4(x-0.03) | | Y=0.5(-2)+5 | | -34=7x-2(x-8) | | x(x+1)+1=x^2+x-2 | | -4.9x^2+9.8+o=-3 | | 3(2x+1)-2(x-1)=25 | | 3(2x+1)-2(x+1)=4x+1 | | -3x+2(2x+7)=5 | | 2(x-9)=2x+1 | | tg^2x=1 | | (5-2x)(3-2x)=0 | | 2(x+3)=1+3(x-1) | | y=3(1)+4 | | 1.4x^2+3.1X=1 | | 5x+y=112 |

Equations solver categories