40x+(16x+(1/2x))=672

Simple and best practice solution for 40x+(16x+(1/2x))=672 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40x+(16x+(1/2x))=672 equation:



40x+(16x+(1/2x))=672
We move all terms to the left:
40x+(16x+(1/2x))-(672)=0
Domain of the equation: 2x))!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
40x+(16x+(+1/2x))-672=0
We multiply all the terms by the denominator
40x*2x))+(16x+(-672*2x))+1=0
Wy multiply elements
80x^2-1344x=0
a = 80; b = -1344; c = 0;
Δ = b2-4ac
Δ = -13442-4·80·0
Δ = 1806336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1806336}=1344$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1344)-1344}{2*80}=\frac{0}{160} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1344)+1344}{2*80}=\frac{2688}{160} =16+4/5 $

See similar equations:

| 7x+2.8=9.5x-39.2 | | 90=x/6 | | 12(y-200)+16y=4y-2100 | | 2(4^2x-7)=22 | | 7c-c-5c+4c=15 | | 32+x=78 | | 6=½z | | 1/2g=1 | | m+m-6=-12+2m | | 2x^2-5+7x=0 | | -6z-6z=-z+5+3z | | 50x=60+1.3x | | 9x-4x+3=x-8+11 | | 8(x-17)-2x=-(x+50) | | 1/23=h | | 4m-15+3m=105 | | 2x+2=+3-8 | | -3.8x=2.28 | | t÷-2-6=-1 | | 9(x+-4)=81 | | 12m−10m=16 | | -13.7=-2.5+x/7 | | x/3+2/5=2/15x+9/15 | | x+2+2x-4=180 | | 12x-11/4=3x-2 | | 0.05(x-180)=280 | | b+22=180 | | (7a-4)+(4a+50)=180 | | a+73=180 | | b³-8b²+16b=0 | | y-17=2y | | (X^2)/2+2x=216 |

Equations solver categories