If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x+10x^2=0
a = 10; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·10·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*10}=\frac{-80}{20} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*10}=\frac{0}{20} =0 $
| 23=7+2b | | 4y–7=3y–2 | | X/4x+7=10+2x | | -11x=-3x+60 | | 9=n/4+4 | | x^2+7x-(6)=0 | | 3y-6=5y | | 6x+36=15-72 | | 15x+24x=0 | | 3x-8+3x+8=2x+9 | | x/21+4=14 | | 27^2x+2=81^2x-1 | | m^2=16/50+6m/15 | | 4^-2k-1=16 | | 6^-x-1=36 | | t/7+14=23 | | 2x-5=4+7 | | 3x=54/3x+15=21 | | 3c-5c+8= | | 5x=20;x | | x•x+5=300 | | 5x/1=5 | | 8xx3=120 | | 25=3a-10 | | 200-15x=20 | | 19-22=n | | x/4-125=0 | | 2(3k-8)=7(k+2) | | 0,3x-1,4=4,6+2,3x | | 5m-m-m+3m=14 | | 5(5t-3)=4(5t+7) | | 4w+2w=2w+7 |