If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+4x=0
a = 40; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·40·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*40}=\frac{-8}{80} =-1/10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*40}=\frac{0}{80} =0 $
| 60-(6×x)=6 | | 10x-1=5x+610x−1=5x+6 | | x/10x-1=5x+610x−1=5x+6 | | 1.25x(x+1)=0.5(2x-1)+3 | | 6t+22=4t | | 8x^-22x+15=0 | | Q=48-0.4p+20-0.1p | | w/4-10=16 | | Q=48-0.4p | | (x+1)(x+2)=x(x+4) | | v+2.9=5.71 | | w+1.5=3.88 | | 3(2x+1)-4(2-x)=4x+5(2x-2) | | 6x-9+2x=31 | | 12/15=x25 | | 3x-5(x+2)+22=3(x-2)+13x | | Y=86.503x | | 4x^2-48x-25=0 | | 35y+35y=825 | | 10m=-50 | | 2(t–2)2–t+2=0 | | 8x+14=7x+8 | | m/(-5)=7 | | m/97=0 | | 3x+2=5x-38 | | m/(-8)=8 | | m/63=1 | | 0.05=x/(75+x) | | m/10=-5 | | m/(-4)=-2 | | 6-x=60 | | s+10.5=14 |