If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40z^2-32z=0
a = 40; b = -32; c = 0;
Δ = b2-4ac
Δ = -322-4·40·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32}{2*40}=\frac{0}{80} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32}{2*40}=\frac{64}{80} =4/5 $
| 5+6y^2=113 | | x+.16*x=4500 | | 3+t=-5t-7 | | 20+7x=9x+6*4 | | 20+7x=9x+6x4 | | X(.2)=y(.8) | | (x-2)+2x+4)=x | | 3/2x(2x+6)=3x+9 | | 3.4s-17-2.1=8.1 | | -2r+-5=10-7r | | 3.14r2=379.94 | | 3=3x+(-3) | | 4/24=c/34 | | 42x^2=50x^2-20 | | -4/7=-1/4-5/6q | | 47/27=5x-1/4+5/4x | | -7+5b=6(7b-6)-8 | | -2x-6=-12;3 | | 2x-14/5=-6+6x+10/4 | | 4m+17=15-2m | | 0=-16t^2-8t+8 | | 8s-5+9=22 | | -5/4x=3/2=7/8 | | 3/4*g=-12 | | 15a^2-4a-29=0 | | 0-2(2x+1)=2(-3x+1) | | 2(3x-1)=4(x*3) | | 3(j+20)-6=3 | | 8=2(q-10) | | 0-(x+8)=2(4x+5) | | (12-d)3=9 | | (4-x)^3=64 |