42(24)=(2x-8)(x+6)

Simple and best practice solution for 42(24)=(2x-8)(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 42(24)=(2x-8)(x+6) equation:



42(24)=(2x-8)(x+6)
We move all terms to the left:
42(24)-((2x-8)(x+6))=0
We multiply parentheses ..
-((+2x^2+12x-8x-48))+4224=0
We calculate terms in parentheses: -((+2x^2+12x-8x-48)), so:
(+2x^2+12x-8x-48)
We get rid of parentheses
2x^2+12x-8x-48
We add all the numbers together, and all the variables
2x^2+4x-48
Back to the equation:
-(2x^2+4x-48)
We get rid of parentheses
-2x^2-4x+48+4224=0
We add all the numbers together, and all the variables
-2x^2-4x+4272=0
a = -2; b = -4; c = +4272;
Δ = b2-4ac
Δ = -42-4·(-2)·4272
Δ = 34192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{34192}=\sqrt{16*2137}=\sqrt{16}*\sqrt{2137}=4\sqrt{2137}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2137}}{2*-2}=\frac{4-4\sqrt{2137}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2137}}{2*-2}=\frac{4+4\sqrt{2137}}{-4} $

See similar equations:

| √x=64 | | Y/2+y=-6 | | 8=b/2+3 | | 20(36)=(2x-6)(x+6) | | 20⋅7^3y=5 | | p/1-3=-3 | | (.7)x=100 | | 14x+1=15x-5 | | 1/5x+1/2x=4 | | n/3-3=17 | | 120+-11x=20 | | 103+-5x=12 | | 5x+4=15x-30 | | x=3(6+25+15)+18 | | 10+x=-10−2x−7 | | 3(x-1)=5x-27 | | 126=10x-2 | | -5+9w=5w+7 | | 3x-4(3x+5)=-56 | | 2(5x-7)=3(x+7) | | (4a-8)=(8a-10) | | -5d=-7d-8 | | 8-7f=-5f | | 132-4x=112 | | 7x+78=534 | | 57x+1=58x-1 | | -4−5j=-6j | | 57x+1=58-1 | | 4x^+2x-1=0 | | 1-4t=10-t | | 4n=5+7 | | 25.6=v/11 |

Equations solver categories