42-(3c+4)=2(c+7)c

Simple and best practice solution for 42-(3c+4)=2(c+7)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 42-(3c+4)=2(c+7)c equation:



42-(3c+4)=2(c+7)c
We move all terms to the left:
42-(3c+4)-(2(c+7)c)=0
We get rid of parentheses
-3c-(2(c+7)c)-4+42=0
We calculate terms in parentheses: -(2(c+7)c), so:
2(c+7)c
We multiply parentheses
2c^2+14c
Back to the equation:
-(2c^2+14c)
We add all the numbers together, and all the variables
-3c-(2c^2+14c)+38=0
We get rid of parentheses
-2c^2-3c-14c+38=0
We add all the numbers together, and all the variables
-2c^2-17c+38=0
a = -2; b = -17; c = +38;
Δ = b2-4ac
Δ = -172-4·(-2)·38
Δ = 593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{593}}{2*-2}=\frac{17-\sqrt{593}}{-4} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{593}}{2*-2}=\frac{17+\sqrt{593}}{-4} $

See similar equations:

| 6z-12=16 | | 3-20v=7 | | -36s=-36 | | –5p+3p=–16 | | -24-8p=4p= | | 2x+12+60=90 | | 8x+7(x+8)=-34 | | 3x+9=23+x | | 2w-1=-9+w | | 3x-14+2(3x-6)=180 | | 4+5=p | | 27=-9(x+15) | | 87-5+x=180 | | x−15x=x−1 | | -2=b+4 | | 24+99x=45x+89 | | 14=-7-v | | (7x-16)=(5x+16) | | -8+3(x+6)=22-3x | | 20+2r=-20+4r | | x+x+20+4x-100=180 | | -(x+4)=-28 | | -5c+1=8-4c | | 10-2a-3-4a=7a-1 | | -14+(-m)=-24 | | y=36-24 | | 24x+99=45+89x | | x+15+6x-26+5x+7=180 | | 10t+3t-2t+4t-5t-1=9 | | 2(-x4)+5x-3=11 | | 5(6x-3)=-75 | | -10f+2=10-8f |

Equations solver categories