If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42-(3c+4)=2c(c+4)+c
We move all terms to the left:
42-(3c+4)-(2c(c+4)+c)=0
We get rid of parentheses
-3c-(2c(c+4)+c)-4+42=0
We calculate terms in parentheses: -(2c(c+4)+c), so:We add all the numbers together, and all the variables
2c(c+4)+c
We add all the numbers together, and all the variables
c+2c(c+4)
We multiply parentheses
2c^2+c+8c
We add all the numbers together, and all the variables
2c^2+9c
Back to the equation:
-(2c^2+9c)
-3c-(2c^2+9c)+38=0
We get rid of parentheses
-2c^2-3c-9c+38=0
We add all the numbers together, and all the variables
-2c^2-12c+38=0
a = -2; b = -12; c = +38;
Δ = b2-4ac
Δ = -122-4·(-2)·38
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{7}}{2*-2}=\frac{12-8\sqrt{7}}{-4} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{7}}{2*-2}=\frac{12+8\sqrt{7}}{-4} $
| -5x+6=-x+38 | | 3c+12=5c | | 73=-6(k-7+6(k+5) | | 5x+6=4x+38 | | 3x^+3=15 | | (5−3r)(5−3r)=9r^2-30r+25 | | 3x-6-7x=-66 | | 1.5x+39=180 | | 1/7=v/16 | | x2-18=7x | | 9u-8u+8=12-2 | | 3(x-5)-3=3x-5 | | 15/9(x+53/60)-(11)=0 | | 19s=58.3 | | 15/9(x+53/60)=11 | | 3(x-5)-3=x-5 | | -17x+8=42+12x-4 | | 6x-9-5x=-4 | | 25+7x=75 | | 16=1y7 | | a=-6+3 | | 4x-0.8=3.8 | | 2.25y-12.60=23.85 | | 2.50m+3.99=18.99 | | 7x=7,021 | | 4^2z/3=8^(z+2) | | 31=-16t^2 | | 6(n+8)=–96 | | 4x+2x+6x+1+3+8=180 | | 6x=366 | | 12=3/5f | | 3n-8=5n+2 |