427.50=1500(r)(2)

Simple and best practice solution for 427.50=1500(r)(2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 427.50=1500(r)(2) equation:



427.50=1500(r)(2)
We move all terms to the left:
427.50-(1500(r)(2))=0
determiningTheFunctionDomain -1500r2+427.50=0
We add all the numbers together, and all the variables
-1500r^2+427.5=0
a = -1500; b = 0; c = +427.5;
Δ = b2-4ac
Δ = 02-4·(-1500)·427.5
Δ = 2565000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2565000}=\sqrt{22500*114}=\sqrt{22500}*\sqrt{114}=150\sqrt{114}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-150\sqrt{114}}{2*-1500}=\frac{0-150\sqrt{114}}{-3000} =-\frac{150\sqrt{114}}{-3000} =-\frac{\sqrt{114}}{-20} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+150\sqrt{114}}{2*-1500}=\frac{0+150\sqrt{114}}{-3000} =\frac{150\sqrt{114}}{-3000} =\frac{\sqrt{114}}{-20} $

See similar equations:

| 8+2x+4+10x=0 | | 6+3j=19.29 | | A=8(15)=120m2 | | p+16p=6 | | 19.29=3j+6 | | 8y×10=80 | | 2(b-8)+3=7 | | 3x-7(0)=13 | | 3y+5.32=18.52 | | 5^x=126 | | 4x+x+18+112=180 | | 16=1.25x+.75(-2x)+.55(4x) | | 8y×10=89 | | 6.58+2b=15.38 | | 1/4k/1/2(1/2k+4)=6 | | 9.8+2q=17.8 | | 63=11x-2x | | 7x−6=7x−6=8x−27 | | -1/5y-5/2=2y-7/5 | | -4/5x-7/15x+1/3x=-56 | | 4x-20+19=2x-35 | | 3(x+2)-1=15+x | | 27/5=5r | | (5(k+2)-7)/(6)=(13-(4-k))/(9) | | 11+.21x=20+.10 | | 2x+7x(6+7)=36 | | x*x-201=150 | | 7x−6+8x−27=180 | | -12+15=-1-8x | | (33×-2)y+22=15 | | 212n−20n+6−2= | | 4x+6x+3+15= |

Equations solver categories