42=(1/2)*(b)*(b+3)

Simple and best practice solution for 42=(1/2)*(b)*(b+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 42=(1/2)*(b)*(b+3) equation:



42=(1/2)(b)(b+3)
We move all terms to the left:
42-((1/2)(b)(b+3))=0
Domain of the equation: 2)b(b+3))!=0
b∈R
We add all the numbers together, and all the variables
-((+1/2)b(b+3))+42=0
We multiply all the terms by the denominator
-((+1+42*2)b(b+3))=0
We calculate terms in parentheses: -((+1+42*2)b(b+3)), so:
(+1+42*2)b(b+3)
We add all the numbers together, and all the variables
85b(b+3)
We multiply parentheses
85b^2+255b
Back to the equation:
-(85b^2+255b)
We get rid of parentheses
-85b^2-255b=0
a = -85; b = -255; c = 0;
Δ = b2-4ac
Δ = -2552-4·(-85)·0
Δ = 65025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{65025}=255$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-255)-255}{2*-85}=\frac{0}{-170} =0 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-255)+255}{2*-85}=\frac{510}{-170} =-3 $

See similar equations:

| 2=-8(1+2b)+2(3b-5) | | 3/4(×-2)-1/3(5-2x)=-2 | | 5v=15/2 | | a+-7=3 | | 1/5(5x-6)=-7/4-1/4 | | 3y2-4y-7=0 | | 15-24a=5 | | 4=0.125+b | | -5+7x=43-x | | 7(4x+7)=21 | | (5x+3)+(4x+8)=146 | | 2+(-1+6x)=7x-1 | | 2n^2-3n+2=60 | | 2(v-7)-7v=-34 | | 3−7r=5r+63 | | 31n×=21 | | 1/3x+5/6=1 | | 6x+25=x+5(5=x | | 10-5x+7x=-3x+-15 | | 1=x^2-9x+7x^2-63+x^2+3x+7x+21 | | 32/x=2x | | -55=15(k-5) | | −​0.10(22)+0.20x=​0.05(x−14​) | | y/2=-4/3-4 | | 10z+7=z+61 | | 5+x/2=1 | | 6x(3x-2)=8 | | -6(7-2p)=3(5p+1) | | 14y+-20y-15y+-17y=-16 | | -4w+2(w+6)=-2 | | 3a+8+a=40 | | 22+2a=-9a |

Equations solver categories