42=x(180-x)

Simple and best practice solution for 42=x(180-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 42=x(180-x) equation:



42=x(180-x)
We move all terms to the left:
42-(x(180-x))=0
We add all the numbers together, and all the variables
-(x(-1x+180))+42=0
We calculate terms in parentheses: -(x(-1x+180)), so:
x(-1x+180)
We multiply parentheses
-1x^2+180x
Back to the equation:
-(-1x^2+180x)
We get rid of parentheses
1x^2-180x+42=0
We add all the numbers together, and all the variables
x^2-180x+42=0
a = 1; b = -180; c = +42;
Δ = b2-4ac
Δ = -1802-4·1·42
Δ = 32232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32232}=\sqrt{4*8058}=\sqrt{4}*\sqrt{8058}=2\sqrt{8058}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-2\sqrt{8058}}{2*1}=\frac{180-2\sqrt{8058}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+2\sqrt{8058}}{2*1}=\frac{180+2\sqrt{8058}}{2} $

See similar equations:

| n2+20n=44 | | (180-x)=42(x) | | x=42(108-x) | | 5-(7x-7)=-9.4x+6 | | v2-16v=-35 | | x=(180-x)42 | | p2+4p=77 | | x+68=105 | | x+105+68=180 | | 68+105=x | | 68+x+105=180 | | 42+26+x=180 | | 7g+8=4g-7 | | -16-8t=7 | | 5a-7=-18 | | 4/15=x/5 | | 2x+5=95+5x | | 4-(6n-16)=-28 | | 0.5(12w+8)-0.2(10w-5)=0 | | 9m+3=57 | | 5x+7−4x=−21 | | (x+12)^2=25 | | p^2+18p-88=0 | | 100m^2+20m+1=0 | | 25(j+40)=-4 | | 1146/x=4 | | -8x-14=7(-2x-4x)+4 | | 18w=-2/3 | | 20y-4(16+-2y)=48 | | -6=8-50+x | | -9/4v+9/5=7/8 | | n^2+14n-10=5 |

Equations solver categories