If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x^2=168
We move all terms to the left:
42x^2-(168)=0
a = 42; b = 0; c = -168;
Δ = b2-4ac
Δ = 02-4·42·(-168)
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-168}{2*42}=\frac{-168}{84} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+168}{2*42}=\frac{168}{84} =2 $
| x-1+x+10+79+2x=360 | | .7k-4=5(k+3)+1 | | 8x+2(x−7)=7x+3x-14 | | 40y+12=20y+35 | | 6x+9x-46=69-8x | | 8^3x-5=14 | | x=0.6x+2 | | 8x+2(x−7)=7x+3x−14 | | 8(5x-5)=280 | | 168=42x2 | | 4/5b=49 | | j+-12=423 | | 10+5x-4x-6=8x | | x+3+4x-58=90 | | 3x+2=-28-3x | | 14x2+14x+84=0 | | 4x+7x-45=60-4x | | (x+2)+(x+10)+52+2x+88=360 | | d-102=412 | | 6y-11=-6+6y | | f/7=31 | | f=36–26 | | 6x-2=1x+7.25 | | x4+-6x3+-5x2+-6x+1=0 | | N4-49n2=0 | | x=x4–13x2–25x–12 | | 3(4x-6)+23=12(x-1) | | 1=2/3(10x-15) | | h2= 2 | | -12j=168 | | -350-24x=190-12x | | 11=3−43x. |