If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x^2=2
We move all terms to the left:
42x^2-(2)=0
a = 42; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·42·(-2)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*42}=\frac{0-4\sqrt{21}}{84} =-\frac{4\sqrt{21}}{84} =-\frac{\sqrt{21}}{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*42}=\frac{0+4\sqrt{21}}{84} =\frac{4\sqrt{21}}{84} =\frac{\sqrt{21}}{21} $
| x/6=(2/9) | | m-2+2=15-2m | | 100=15x-3 | | −4+x=1 | | 3(7a-4)=-159 | | 4(2+3c)=9c+20 | | 97+22+x=180 | | q—204=247 | | 5x+21=4x+34 | | 20=6v+4v | | (3h+18)°=(15h) | | x64=1 | | 6x-12+4x=18 | | g/8=9-1/10 | | 1/2(m+16)=12 | | 4n+5+n=20 | | 5x+21+4x+34=180 | | q–-204=247 | | x=4(2x+5) | | x+8+3=11 | | 2(4c+1)+7(c+8)=32 | | 4(1.19)^x+1=14 | | 4x+2=-6x-8 | | -4=4v-8v | | |n-5|=8 | | 9(2x)=7x+5 | | 28=8+u= | | 17=5+3h | | (3x-10)=(8x-30) | | 10-6x+60+70=180 | | 10(r-6)=17 | | 28=8+u |