If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42z^2+14z=0
a = 42; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·42·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*42}=\frac{-28}{84} =-1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*42}=\frac{0}{84} =0 $
| 6x^2-9x=150 | | 3D+18=30-4d | | (2w^2)+6=-7w | | 7u+6+2(7u-6)=9 | | 2/3a-12/3a=-3-7 | | 8+4y=3+3y | | -(x)+1=x | | x+3x=212 | | -20=-4×-6x | | k=5.5 | | 1/4e=1/2 | | 14e=12 | | Y=-0.15x+1.35 | | (1/3)n+3n=40 | | 12x^2+6x=216 | | 8v-5=35 | | 20x^2-9x+18=0 | | 1/3n+3n=40 | | 7-6u=25 | | 5^x+15=86 | | 4x^2+0.047=0.00094 | | 2x-8/10=4x-12/2 | | 5x÷6=13 | | v3+10=11 | | v3+ 10=11 | | X+8=3y-6 | | 5^2x−3=6^x+2 | | 10x=-1/40 | | -32h+-20=4 | | x+24-9×=-8 | | y/5=103 | | 12x-15=6x-4 |