If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43/12w+1814=25/6w+1744
We move all terms to the left:
43/12w+1814-(25/6w+1744)=0
Domain of the equation: 12w!=0
w!=0/12
w!=0
w∈R
Domain of the equation: 6w+1744)!=0We get rid of parentheses
w∈R
43/12w-25/6w-1744+1814=0
We calculate fractions
258w/72w^2+(-300w)/72w^2-1744+1814=0
We add all the numbers together, and all the variables
258w/72w^2+(-300w)/72w^2+70=0
We multiply all the terms by the denominator
258w+(-300w)+70*72w^2=0
Wy multiply elements
5040w^2+258w+(-300w)=0
We get rid of parentheses
5040w^2+258w-300w=0
We add all the numbers together, and all the variables
5040w^2-42w=0
a = 5040; b = -42; c = 0;
Δ = b2-4ac
Δ = -422-4·5040·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-42}{2*5040}=\frac{0}{10080} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+42}{2*5040}=\frac{84}{10080} =1/120 $
| 3y=13+1/6y | | −4f=20 | | 3/7t+1/5=9/10 | | 12x+21=8x+49 | | 4y+y-10=180 | | -6q-(-4)=-8 | | 8x^2+70x+750=0 | | h−468=44 | | -12=(4x-3) | | 7x+3=3×+31 | | 3.50x+250=5.00x+175 | | -9+m=8 | | –9b=–10b−7 | | -3p+8=-10 | | 78+(4x+12)=180 | | 4x-14=5x-16 | | 4/x-8=19 | | 13x+46=3x-10 | | −2(2x−9)=−38 | | -3(x-13)=-66 | | P=6n-2n+2 | | 5y+34=-3(-7y+1) | | 5.00x+175=3.50x+250 | | q/3-20=3 | | 0.75(8+c)=2-1.25 | | -9+x/12=-10 | | 14-x/3=15 | | 4(9x+6)=34x-7 | | 6y-4y-y=10 | | 15^8y=9^2 | | 3=20+v | | 4x-14=7x-38 |