If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43/60x+680=x
We move all terms to the left:
43/60x+680-(x)=0
Domain of the equation: 60x!=0We add all the numbers together, and all the variables
x!=0/60
x!=0
x∈R
-1x+43/60x+680=0
We multiply all the terms by the denominator
-1x*60x+680*60x+43=0
Wy multiply elements
-60x^2+40800x+43=0
a = -60; b = 40800; c = +43;
Δ = b2-4ac
Δ = 408002-4·(-60)·43
Δ = 1664650320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1664650320}=\sqrt{16*104040645}=\sqrt{16}*\sqrt{104040645}=4\sqrt{104040645}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40800)-4\sqrt{104040645}}{2*-60}=\frac{-40800-4\sqrt{104040645}}{-120} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40800)+4\sqrt{104040645}}{2*-60}=\frac{-40800+4\sqrt{104040645}}{-120} $
| 3x-27=8(x-4) | | 31/3x=3.3 | | 2(6y-18)-102=78-18(y-2) | | 20x-40=10x+30=180 | | 3m-1m+(m-2)=19.75 | | 10(x−9)=0 | | r-35=2 | | 4x^2=17^2 | | -3(w+8)=5w+32 | | 3p+1.50=24 | | 14/3=2v | | 2x+3(x+1.5)=15 | | 39=2(w+6)-5w | | 0=10(x−9) | | 3(c-4)=4c- | | 13=‐1÷6y | | 8x-67=-75=96 | | x/2.2+12=16.4 | | -6u+2(u-6)=-4 | | 2y=10=24 | | 8x-67+-75=96 | | 10^(x-4)(x-5)=100 | | -4=4(x+4)-8x | | 5(v-2)-8v=-28 | | −2x−19=−17x+26 | | (2x+3)=48 | | 21.61-1.29s=10 | | 2500t+45000=2000t+62000 | | 1/3n-8=13 | | ?x?=100 | | 22=8y+6(y+4) | | X/3=10x3 |