432.64=125.44+(x*x)

Simple and best practice solution for 432.64=125.44+(x*x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 432.64=125.44+(x*x) equation:



432.64=125.44+(x*x)
We move all terms to the left:
432.64-(125.44+(x*x))=0
We add all the numbers together, and all the variables
-(125.44+(+x*x))+432.64=0
We calculate terms in parentheses: -(125.44+(+x*x)), so:
125.44+(+x*x)
determiningTheFunctionDomain (+x*x)+125.44
We get rid of parentheses
x*x+125.44
Wy multiply elements
x^2+125.44
Back to the equation:
-(x^2+125.44)
We get rid of parentheses
-x^2-125.44+432.64=0
We add all the numbers together, and all the variables
-1x^2+307.2=0
a = -1; b = 0; c = +307.2;
Δ = b2-4ac
Δ = 02-4·(-1)·307.2
Δ = 1228.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1228.8}}{2*-1}=\frac{0-\sqrt{1228.8}}{-2} =-\frac{\sqrt{}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1228.8}}{2*-1}=\frac{0+\sqrt{1228.8}}{-2} =\frac{\sqrt{}}{-2} $

See similar equations:

| 2t-3/45t^2=0 | | 72/x=16/45 | | 15x^2-120x+225=0 | | P2+10p+10=-5 | | 15^2-120x+225=0 | | 7a+1=4a+40 | | 10.3=5x−1.7. | | 1960+x(150.50)=3997 | | 5(1/4v=-2(1/4 | | 24/72=n/9 | | 24/72=x/9 | | 15/18=45/x | | 6y–2=2y+22 | | 23-z=5+z | | 20x=30+16x | | 12x–2=5x-10 | | x+80=12800 | | (z-1)*7=49 | | 7y+5=-2 | | a12=93 | | 18=2r+4r | | ^x+80=^12800 | | (x+20)=(4x=55) | | 13^x=147 | | (4x-2)=(6x-14) | | 28=7(12-r) | | 32+2x=5x+5 | | 2=3(x-5)-4 | | 4(2x+5)+10=14 | | 4x-4=2(4x+4) | | 21(2x-8)=14(4x-8) | | 3(2x-2)+3=-27 |

Equations solver categories