432=x(96-2x)/2

Simple and best practice solution for 432=x(96-2x)/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 432=x(96-2x)/2 equation:



432=x(96-2x)/2
We move all terms to the left:
432-(x(96-2x)/2)=0
We add all the numbers together, and all the variables
-(x(-2x+96)/2)+432=0
We multiply all the terms by the denominator
-(x(-2x+96)+432*2)=0
We calculate terms in parentheses: -(x(-2x+96)+432*2), so:
x(-2x+96)+432*2
We add all the numbers together, and all the variables
x(-2x+96)+864
We multiply parentheses
-2x^2+96x+864
Back to the equation:
-(-2x^2+96x+864)
We get rid of parentheses
2x^2-96x-864=0
a = 2; b = -96; c = -864;
Δ = b2-4ac
Δ = -962-4·2·(-864)
Δ = 16128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16128}=\sqrt{2304*7}=\sqrt{2304}*\sqrt{7}=48\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-48\sqrt{7}}{2*2}=\frac{96-48\sqrt{7}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+48\sqrt{7}}{2*2}=\frac{96+48\sqrt{7}}{4} $

See similar equations:

| 3x/15=4x/5x | | q+15/4=7 | | 29=j/9+26 | | 9(y-3)+3(y+4)=9 | | +k+3=13 | | (X-2)(x-2)(x-2)(x-2)(x-2)=40 | | -4y+32+7y=50 | | –6(r+9)=–78 | | f-17=24 | | f-17=25 | | -1/2x+4=24 | | 18y-21-8y=-31 | | 7=t−36/6 | | 0=x+x(2/3)-56 | | x/0.5=-30 | | 5=v+7/4 | | b/9+89=95 | | -10+(n/3)=0 | | -9(6x-3)+6(1+4x)=-30x+33 | | 0.5+0.8=0.18(5y-4) | | 4(3(2)-y)=10 | | 5/9(x-28)=25 | | -4y-3y=-21 | | 1/3x=6/7 | | x^2+14x=48 | | -3x-9=5x-9-8x | | -7(3x+4)+5x=68 | | -12y-y=39 | | 10x^2-12=10x | | 12x+6=2x-24 | | 9x-42x=33 | | 2x-6+2(5x+1)=-4(x+3) |

Equations solver categories