432x+342=964/5x

Simple and best practice solution for 432x+342=964/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 432x+342=964/5x equation:



432x+342=964/5x
We move all terms to the left:
432x+342-(964/5x)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
432x-(+964/5x)+342=0
We get rid of parentheses
432x-964/5x+342=0
We multiply all the terms by the denominator
432x*5x+342*5x-964=0
Wy multiply elements
2160x^2+1710x-964=0
a = 2160; b = 1710; c = -964;
Δ = b2-4ac
Δ = 17102-4·2160·(-964)
Δ = 11253060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11253060}=\sqrt{36*312585}=\sqrt{36}*\sqrt{312585}=6\sqrt{312585}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1710)-6\sqrt{312585}}{2*2160}=\frac{-1710-6\sqrt{312585}}{4320} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1710)+6\sqrt{312585}}{2*2160}=\frac{-1710+6\sqrt{312585}}{4320} $

See similar equations:

| 8(x-15=3(x+5) | | -7(x+1)=7(x+1) | | -3x+5=-6x–7 | | 20=3q-13 | | -8(-h+4)=-2h+5h-12 | | 1. -3x+5=-6x–7 | | 11y-2+11y=20y-20 | | -9-6r=-2r-7r. | | 17-5d=15d-20d+12 | | 13x-6-5+x=31 | | 7(-2u+2)-5u=14-9u | | 5(3x-4)=26 | | 7x+47=61 | | 1+0.75x=2+0.80x | | 4R-m4=3R+10 | | C=1200+2.15x | | 72+65+x=180 | | 2+8q+12=8q+11 | | h-6.2=7.1 | | (3x+1)=(x+8) | | -6(-3s+3)=-13+18s | | h-6.2=17.1 | | x114= 1 | | 9+3i/2+5i=0 | | 5x2−18x+9=0 | | 100(x+3)=1,000 | | -7g-11=3(-4g+16)+16 | | -2=x7+5 | | 25=w/3 | | 14s-14=-3+14s+17 | | 1x+42=10 | | -4w-13=-2-4w-11 |

Equations solver categories