If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4363x^2+4=436
We move all terms to the left:
4363x^2+4-(436)=0
We add all the numbers together, and all the variables
4363x^2-432=0
a = 4363; b = 0; c = -432;
Δ = b2-4ac
Δ = 02-4·4363·(-432)
Δ = 7539264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7539264}=\sqrt{576*13089}=\sqrt{576}*\sqrt{13089}=24\sqrt{13089}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{13089}}{2*4363}=\frac{0-24\sqrt{13089}}{8726} =-\frac{24\sqrt{13089}}{8726} =-\frac{12\sqrt{13089}}{4363} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{13089}}{2*4363}=\frac{0+24\sqrt{13089}}{8726} =\frac{24\sqrt{13089}}{8726} =\frac{12\sqrt{13089}}{4363} $
| 4363x2+4=4363, | | -3(d=1)=-2(3d-9) | | 7x-9=x-27 | | -10(n-6)=4(6n+6) | | 14-p=29 | | 16-3n=-5 | | 5(-10x-20)=350 | | 5(-10x-20)=250 | | 4(3x+4)-4=32 | | -2m+6+5m=32 | | 6y+3=5y+14 | | -13+2x=-3x+17 | | 2.5x-3=2.5x-2 | | (2.5x-3)4=(2x-2)4 | | 2(5x-6)=3(3x-1) | | 765799954x=π+45 | | 85+90+t=180 | | 90+20+t=180 | | 90+65+t=180 | | 50+90+t=180 | | -5e-6=15 | | 30+90+t=180 | | 75+90+t=180 | | 5e-10=15 | | 7y+3y+12=32 | | 130+t+90=180 | | 90+130+t=180 | | 130+90+t=180 | | 3e+9=24 | | 40+90+t=180 | | 34+2+t=180 | | 41+49+t=180 |