If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44-x2=0
We add all the numbers together, and all the variables
-1x^2+44=0
a = -1; b = 0; c = +44;
Δ = b2-4ac
Δ = 02-4·(-1)·44
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{11}}{2*-1}=\frac{0-4\sqrt{11}}{-2} =-\frac{4\sqrt{11}}{-2} =-\frac{2\sqrt{11}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{11}}{2*-1}=\frac{0+4\sqrt{11}}{-2} =\frac{4\sqrt{11}}{-2} =\frac{2\sqrt{11}}{-1} $
| 5x2-70x=0 | | 5x^2+-70x=0 | | 235*e^2=12830.5653 | | -45x^2+15x^2=10x | | (0.4)^x=1/2 | | -8=1/8x-10 | | 2/8x-8=3/8x-10 | | 2x^2+10x-750=0 | | X+25x=50 | | (r+0.4)^3=0 | | X+25y+50=0 | | (-121(r-0.4))/((r+0.4)^3)=0 | | (-121(r-0.4))/(r+0.4)^3=0 | | 4x-8=x-10 | | 64=x-19 | | 71=45+x | | 71=45=x | | n*n+6n+9=25 | | 1.3x=1 | | k/1*5=3 | | 6x^2-540=0 | | (3.5x)x=12 | | 2x^2+16-10=0 | | X+x÷2+x÷4=99 | | 1/4n+3=1+3/4n | | 3-x=2(x-5)=5x-1 | | 1/3n+2=2/3n | | -5n+17=4n-10 | | 9n+6=3n+42 | | 9z+10=1-15+3z | | X+(1.65x)=2761905 | | T=6x5+7 |