If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44.4+29.9y(0.00214-y)=100-35.1y(1+y)
We move all terms to the left:
44.4+29.9y(0.00214-y)-(100-35.1y(1+y))=0
We add all the numbers together, and all the variables
29.9y(-1y+0.00214)-(100-35.1y(y+1))+44.4=0
We multiply parentheses
-29y^2+0.06206y-(100-35.1y(y+1))+44.4=0
We calculate terms in parentheses: -(100-35.1y(y+1)), so:We get rid of parentheses
100-35.1y(y+1)
determiningTheFunctionDomain -35.1y(y+1)+100
We multiply parentheses
-35y^2-35y+100
Back to the equation:
-(-35y^2-35y+100)
-29y^2+35y^2+35y+0.06206y-100+44.4=0
We add all the numbers together, and all the variables
6y^2+35.06206y-55.6=0
a = 6; b = 35.06206; c = -55.6;
Δ = b2-4ac
Δ = 35.062062-4·6·(-55.6)
Δ = 2563.7480514436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35.06206)-\sqrt{2563.7480514436}}{2*6}=\frac{-35.06206-\sqrt{2563.7480514436}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35.06206)+\sqrt{2563.7480514436}}{2*6}=\frac{-35.06206+\sqrt{2563.7480514436}}{12} $
| A+b=55 | | 3y+9=5y+7 | | x+2x=15000000 | | 9x^2+36x-405=0 | | 21y+3=5y-5 | | 100+4*x=420 | | 3n+2n+1=4 | | 18/x+18/42=1 | | 7q-3(4-q)=28 | | 1/m-4(m+4)m=8 | | 2(x+7)=87 | | -x–8=-17. | | x+2=9. | | -6x=-12. | | x+3=8. | | -2x+6=12. | | 3h-2.8=5.3 | | x+4=7. | | 3h-2(h-1=10) | | 0.3=840,000/x | | 3h-2(h-1=10 | | A=46a+3= | | 2(z+5)+4z=28 | | N/n+5=37 | | 5n+1=37 | | 32=3+17n | | x=10*3-5(9*3=27)+2 | | x=10*3-5 | | -5=u4–6 | | -5=u/4–6 | | 50+2x=6x | | 3.5(12.6r-6.8)=76.7 |